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Abstract

The amount of structural information encoded in secondary structure can be measured by its ability to specify the correct peptide backbone

conformation of protein chains. Using methodology derived from information theory, we generate optimized distributions of backbone phi–

psi dihedral angle pairs given either correct or predicted three-state secondary structure. Entropy measurements on these distributions provide

a means to determine the effect of secondary structure knowledge on identifying the actual 3D conformation of protein chains. We find that

only a modest fraction of the total uncertainty in phi–psi conformation (from 14 to 38%, at 20–908 resolutions, respectively) is resolved even

with perfect knowledge of secondary structure. We further show that prediction of secondary structures, because of an accuracy ceiling below

80%, degrades structural information substantially. If prediction accuracy is below 50%, virtually no advantage is gained from using the

prediction. Moreover, even state-of-the-art prediction accuracy of 75% retains less than one-third of the structural information encoded in

secondary structure. We demonstrate that the level of structural description affects the amount of information extracted. The effort to provide

as much structural detail as possible, while faced with a limited structural data set, results in an optimum resolution in the vicinity of a 208-

partition of the ðf;cÞ plane. We show that structural information increases exponentially with prediction accuracy, revealing that even

marginal gains in the performance of secondary structure prediction algorithms are important for the retention of structural information. We

observe that different kinds of secondary structure prediction outputs (single-state prediction, single-state prediction with a confidence index,

and three-state probability prediction) do not differ greatly in the amount of structural information they yield, so long as the methods

formulated in this work to generate propensity distributions are applied appropriately. The optimal phi–psi probability distributions

developed here may be useful in biasing searches in structure space. We discuss the sources of the degradation of information caused by

errors in secondary structure prediction, and their consequences for the prediction of the 3D conformation of protein chains.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The quality and resolution of structural features and

patterns detected by statistical analysis of protein backbone

chains is dependent on the descriptor used to specify

structural data [1,2]. The most common backbone structural

description, the assignment of each residue to one of the

three types of secondary structure (28), provides the simplest

means to identify repeating backbone patterns [3]. How-

ever, since only three states (helix, extended, and coil) are

used in this classification, potentially informative details of

the local sequence dependence of backbone conformation

are not efficiently recognized. Nonetheless, the 28 prediction

problem has become a benchmark in the field of protein

structure prediction, and has prompted the development of

numerous prediction algorithms over the past two decades

[4,5]. Higher resolution structural descriptors, such as the

phi–psi dihedral angle description [1,6] and the Ca trace

[2,7–9], are more successful in cataloguing nuances of the

local sequence–structure relationship.

The goal of protein structure prediction is to assign the

correct 3D conformation to a given amino acid sequence

[10]. Because even complete knowledge of the secondary

structure of a protein is not sufficient to identify its folded

structure, 28 prediction schemes are only an intermediate

step. Recent work has aimed to close the secondary–tertiary

structure gap via homology modelling and other means

[11–13]. As they assume the membership of all patterns of
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28 elements and fold motifs in the known database, such

approaches may not always work. Complementary tech-

niques are being developed to fold specified secondary

structures via energy minimization and other computational

procedures [14–17]. By holding helices and strands rigid in

the course of the minimization, the problem is transformed

into that of folding 28 elements into compact forms. This

procedure is essentially the (non-trivial) ‘coil’ folding

problem, which involves a search for the native structure

of connective coil segments.

The difficulty increases substantially in cases when only

predicted secondary structures are available. Efforts to

increase the prediction accuracy in recent years have stalled

at the 70–75% level [18–20]. The challenge in bridging the

secondary–tertiary structure gap stems from a number of

complications. Structurally homologous proteins show only

90% alignment in their 28 strings on average [21]. More-

over, some conformational irregularities are tolerated in the

‘regular’ helical [22] and sheet structures [23], and therefore

their canonical forms are not always the most appropriate

models. The ‘coil’ assignment (random coil or irregular)

means only that the amino acid backbone does not occur

within organized helical or sheet networks. (However, the

actual backbone ðf;cÞ dihedral angle pair may still exist in

helical or extended regions of the phi–psi space.) This

classification provides little information on the actual

backbone dihedral angles of coil residues. The most

common output of prediction algorithms, a string of 28

states at each residue, glosses over the fact that, on average,

about one in four assignments are wrong, and we do not

know where in the chain they occur.

To address these difficulties, we have implemented an

informatic analysis to explore the utility of 28 prediction

schemes in the computational 3D structural solution of

protein chains. The following questions have served as

guides into this work:

(1) How much structural information is associated with

knowledge of the correct secondary structure of a

protein chain, and how much more is necessary to

finally identify its native backbone conformation?

(2) How informative are limited accuracy outputs of 28

assignment algorithms?

(3) How can such defective outputs be exploited to

assist in narrowing the search for the native

conformation of the protein backbone?

Because of the significant level of uncertainty inherent in

28 prediction algorithms, it is important to sort out truly

informative predictions from those that mislead.

To address the informatic relationship between second-

ary structure and the actual 3D backbone conformation of

protein chains, we begin by formulating a procedure to

generate optimal ðf;cÞ dihedral angle distributions for a

specified 28 state. Using these distributions, we measure the

amount of information actually resolved by full 28 knowledge.

We then extend our procedures to situations where only

predicted secondary structures (with limited accuracy) are

known. Though some investigations have employed pre-

dicted secondary structure as ‘biases’ in simulations

[24–28], no informatically optimized methods have been

developed to preserve maximal structural information in

these circumstances. We address this task here. We provide

a method to evaluate the effectiveness of prediction

algorithms of limited accuracy in extracting backbone

structural information. Simultaneously, we generate distri-

butions in ðf;cÞ space which salvage the information latent

in predicted secondary structures.

Secondary structure prediction algorithms can be classi-

fied in two major categories with respect to the degree of

detail they provide. Single-state prediction ð28PÞ algorithms

give a single string composed of a best guess for the 28 state

of each residue in the input sequence (e.g. [29–32]). Many

of these algorithms include in the output a confidence index,

a single value per prediction, which indicates the expected

accuracy of the particular prediction. The other kind gives a

more detailed output, a three-state probability prediction

ð28P3Þ for each residue, embodied in a set of values which

describe the probability of each of the three 28 types (e.g.

[33–35]). Whereas 28P algorithms output only a single

letter (e.g. H), with or without a confidence index, 28P3

algorithms give a set of probabilities (e.g. 0.7 for H, 0.1 for

E, and 0.2 for C) at each prediction site. In this work, we

examine the informatic utility of these different outputs, and

design methods to generate optimally informative ðf;cÞ

structure propensities in each case.

2. Methodology

Our ultimate goal is to construct probability distributions

which describe as accurately as possible the backbone

structural propensities of a protein chain, given a specified,

limited degree of knowledge. These distributions must

extract the maximum information possible from the

database of known structures [1]. They provide a means to

measure informatic quantities of interest. If one takes a

structural distribution as a measure of the relative like-

lihoods of the possible conformations, the width of the

distribution should indicate the relative ease of locating the

correct conformation using a prediction procedure.

A few words about notation are appropriate. We indicate

the probability distribution of secondary structures as

Pðx28Þ; with x denoting the structural domain, and the

subscript 28 referring to secondary structure. We shall

restrict the 28 description to the three general states (H, E,

and C), used in the standard DSSP assignment protocol [3].1

Similarly, Pðxðf;cÞÞ refers to the probability distribution of

the phi–psi dihedral angle pair. We indicate probability

1 The eight states defined by DSSP were collapsed into three major states

via the following definitions: H ¼ {G,H,I}: E ¼ {E}; C ¼ {B,C,S,T}.
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distributions by (upper case) P and a specific probability by

(lower case) p: We include a superscript, if necessary, to

ðf;cÞ; to indicate the level of resolution used in discretizing

the structural domain. For instance, ðf;cÞ208 denotes an

even partition of the phi–psi plane by an 18 £ 18 grid

system, which divides the space evenly into 324 bins of side

208. In this work, we consider the following resolutions: 908,

458, 208, 108, and 58. We use partitions which contain the

axes of the ðf;cÞ plane (i.e. f ¼ 0 and c ¼ 0) as two of

the specified boundaries.

2.1. Measuring residual structural entropy

The degree of uncertainty associated with the task of

determining the correct backbone conformation of a protein

chain can be measured by the discrete Shannon entropy of

the universe of structures [36]

HðxÞ ¼ 2
X

i

piðxÞ ln piðxÞ ð1Þ

where x can represent any backbone structural descriptor,

and i runs over all possible states of x: This equation

assumes that knowledge of the respective probabilities is

complete; the effectiveness of the equation diminishes as

approximations to the probabilities lose accuracy. The

entropy unit is the ‘nat’ when the natural logarithm is used.

Larger partitions of the structural space (for instance, the

three-state 28 scheme or various n-state phi–psi classifi-

cations, e.g. [37]) can be taken as intermediate, lower

resolution steps toward identifying the actual native structure

of the backbone. This is because more than one state in a fine

partition can belong to a particular state in a coarse partition.

For instance, a residue identified as being in one of the three 28

states can be in many possible ðf;cÞ states. We observe that

the uncertainty in predicting the membership in a coarse

partition cannot be greater than the uncertainty associated with

a more detailed partition. For instance, Hðx28Þ ¼ 1:06 nats,

magnitudes smaller than Hðxðf;cÞ208 Þ ¼ 3:87 nats. (Recall that

entropy is a logarithmic measure.) These values formalize the

fact that it is easier to find or ‘guess’ the correct secondary

structure than the phi–psi conformation.

The desire to use finer structural discretization, in order

to extract useful structural information, is mitigated by

operational limits set by the size of the data set [2]. For

frequencies to be statistically meaningful, one needs a

substantial sampling of all regions of the structural space. In

previous work, we developed computational methods to

measure information gain as a function of both sequence

and structural discretization, and incorporated them into an

automatic information maximization procedure to generate

optimum probability distributions [1]. These methods use as

an underlying control a background distribution, which

becomes more important as one uses increasingly fine

partitions (for both sequence and structure), when the

statistics become sparse. Here, we use the same principles to

build approximations to probability distribution functions,

and employ them to measure the associated entropies. The

mechanics of the methodology will be elaborated in later

sections, where concrete examples are discussed.

2.2. Structural propensities and residual entropies

We are interested in estimating the conditional prob-

ability distribution PðxklxKÞ; which is the probability of a

particular state in the small partition xk given membership

in the large partition xK : For instance, we might wish to

estimate the probability distribution of a residue in phi–psi

space given its 28 class. From these conditional probabil-

ities, the associated residual entropies HðxklxKÞ can be

computed. We use the term ‘residual’ to emphasize the fact

that these measure the amount of uncertainty remaining in

the small partition xk after knowing the state in the large

partition xK :

Specifically, we would like to estimate the conditional

probability distribution Pðxðf;cÞlx28Þ; and use it to calculate

the residual entropy after the correct three-state secondary

structure is known, or Hðxðf;cÞlx28). Clearly, Hðxðf;cÞlx28Þ .

0; because there is a distribution of ðf;cÞ values associated

with any of the three standard 28 states.

We are also interested in incorporating sequence

information, in the hope of further decreasing the residual

entropy. We denote the corresponding entropy by

Hðxðf;cÞlx28;YseqÞ: The simplest sequence information,

which we use here, comes from the identity of the amino

acid at the site in question, or Yseq ¼ Yaa: For example, the

magnitude of the residual entropy Hðxðf;cÞlx28 ¼ H;Yaa ¼

GÞ is the uncertainty left to resolve in the phi–psi domain

after knowing that the residue identity is glycine and its 28

state is helical.

Lastly, we develop a way to estimate the residual entropy

if the 28 structure assignments provided are outputs of

prediction algorithms of limited accuracy. We denote the

corresponding entropy quantities of the two kinds of 28

prediction as Hðxðf;cÞlx28P;YaaÞ and Hðxðf;cÞlx28P3; YaaÞ;

where the subscript 28P and 28P3 indicate the single-state

and three-state probability outputs, respectively.

Our objective is to build structural probability distri-

bution functions which yield the minimum possible residual

entropy [1]. The procedure to generate these optimal

probability distributions is outlined in Section 2.3. We

note that these probability distribution functions can be

useful in a number of applications. In particular, structure

prediction schemes can utilize the distributions to system-

atically bias the search for the native backbone confor-

mation in 3D space (e.g. [38–40]).

2.3. Estimating residual entropy with known 28 assignment

Procedures to generate optimal probability distributions

and calculate the associated residual entropies are described

here. The data from which estimates for pðxðf;cÞm lx28Þ are

made are illustrated in Fig. 1(A)–(C). These figures show
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the distribution of backbone structures from a representative

set of protein chains.2 It is important to buffer raw

frequencies against fluctuation effects brought about by

sparseness of data [1]. We use a hybrid coefficient g and a

background distribution BðxÞ as follows

pðxðf;cÞm lx28i
Þ ¼ ½gBðxðf;cÞm Þ

þ nðx28i
Þ pðxðf;cÞm lx28i

Þ� = ½gþ nðx28i
Þ�

ð2aÞ

where the quantity nðx28i
Þ denotes the total number of

occurrences in the ith 28 state, p denotes a raw frequency,

and pðxðf;cÞm lx28i
Þ is given by

pðxðf;cÞm lx28i
Þ ¼ nðxðf;cÞm lx28i

Þ = nðx28i
Þ ð2bÞ

where nðxðf;cÞm lx28i
Þ is the number of times a residue with

Fig. 1. The distribution of backbone structures from a representative set of protein chains. These illustrations represent the diversity in ðf;cÞ dihedral angle

pairs of (A) helical, (B) extended, and (C) coil residues in the data set.

2 Construction of the data set of protein structures used in this work is

based on the algorithm for generating a representative set of protein chains

by Hobohm and Sander [41]. We use the list containing proteins up to 25%

pairwise sequence-homologous. We use 1045 protein chains, with a total of

207,834 residues. The list of protein chains can be obtained from http://

www.mssm.edu/biomath/papers/proteindataset.html.
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specified secondary structure i falls into the phi–psi

structure bin m: Use of the background distribution

compensates for the fact that some conformations

(especially in fine structural partitions) do not occur in the

data set used to estimate the probability distribution. If raw

frequencies (i.e. Eq. (2b)) are used exclusively, bins or

states that are not populated in the data set have probability

estimates equal to zero. If such a probability distribution is

employed to bias searches for the native structure, these

states, some of which may actually occur, will never be

accessed. The hybrid probability estimate reflects the reality

that we have incomplete knowledge, arising from a limited

data set.

The hybrid coefficient g is an adjustable parameter

designed to balance the contribution of raw frequencies and

the background distribution to the final conditional

probabilities. Our objective is to find the set of structural

distributions with lowest entropy by searching over a range

of g: If there is a substantial number of data points per

sequence and structure partition, the optimization procedure

for g will produce a hybrid distribution weighting the raw

frequency counts more heavily than the background. In this

situation, the well-populated raw frequency counts are taken

as an adequate approximation of the underlying true

probability distribution. On the other hand, if the number

of unique states that subdivide the data is too large for the

number of data points, the best hybrid coefficient will

generate a distribution which favors the background over

the raw frequency counts. As an extreme example, if one

subdivides the phi–psi space into 360 £ 360 bins (i.e. 18

resolution), the resulting number of unique states, 129,600,

is of the same magnitude as the number of data points in our

data set (207,834). Raw frequency distributions generated

from such a partition will be sparse, making them

misleading as representations of the true probability

distributions. A natural solution is to buffer them with a

background distribution.

The choice of background distribution is dictated by the

conditional probability distribution function to be estimated

and the variable being optimized. The background distri-

bution must not involve the variable of interest. For

instance, the background distribution we use to estimate

the effect of 28 knowledge on backbone conformation, as

embodied in Pðxðf;cÞlx28Þ; is Pðxðf;cÞÞ: Of course, the latter

has to be estimated as well. A large data set may be able to

support moderate partitions of ðf;cÞ; however, a back-

ground distribution must still be used to buffer the estimate

for Pðxðf;cÞÞ in extreme cases (i.e. small data set size or fine

structural partitions). The most conservative background

distribution possible is the uniform distribution, which

assumes no prior knowledge of ðf;cÞ propensities. If the

structural partition is chosen judiciously, with the size of the

data set in mind, then the optimal g will be found to have a

low value.

To approximate the entropies Hðxðf;cÞlx28Þ; we rewrite

Eq. (1) as an expectation:

Hðxðf;cÞlx28Þ ¼ E½2ln Pðxðf;cÞlx28Þ� ð3aÞ

With our non-redundant set of protein structures, we can

estimate this expectation as

E½2ln Pðxðf;cÞlx28Þ� ¼ 2ð1=ntotÞ
Xntot

j

ln pðxðf;cÞj lx28Þ ð3bÞ

where the summation is over all instances in the data set of

size ntot: The probability estimate on the right hand side of

Eq. (3b) is computed from the observed frequencies,

excluding the data point being considered from the

computation. This is accomplished by subtracting 1 from

the numerator and the denominator of Eq. (2a), or

pðxðf;cÞm lx28j
Þ ¼ ½g pðxðf;cÞm Þ þ nðx28j

Þ pðxðf;cÞm lx28j
Þ

2 1� = ½gþ nðx28j
Þ2 1� ð4Þ

The effect of sequence information on the residual entropy

is also of interest. We compute the residual entropy of the

distribution from estimates of Pðxðf;cÞm lx28;YaaÞ; where Yaa

is the specified amino acid. As a preliminary step, we only

include single site sequence, as the residue of the site of

interest contains the greatest amount of structural infor-

mation. The background distribution used to estimate this

probability is Pðxðf;cÞm lYaaÞ:

2.4. Conditional probability distributions for prediction

schemes of limited accuracy

The methods we have developed thus far to generate the

optimized structural probability distributions Pðxðf;cÞm lx28Þ

and Pðxðf;cÞm lx28;YaaÞ only apply when we have complete

knowledge of the three-state 28 structure. In reality, the 28

assignment from prediction is only about 70–75% accurate,

and the locations of mis-assigned residues are unknown.

It is not obvious how ab initio schemes can utilize this

defective output to bias a computational search. We

illustrate the problem with an example. If a residue in a

protein chain predicted as H is actually helical, the

probability distribution derived from Fig. 1(A) should

suffice. However, if this residue is actually observed in a

b-sheet with dihedral angles ð290; 1508Þ; the same

probability distribution will not be able to locate the native

backbone conformation as easily, as this region has a low

sampling probability. If the prediction algorithm is only

70% accurate, the misprediction of an E residue as an H

residue is likely to occur more than once within a protein

chain of average length.

Algorithms which output parameters to indicate predic-

tion confidence are more useful. For instance, the PHD

algorithm [34] outputs a ‘reliability index,’ a single number

per prediction site, between 0 and 9, which apparently

correlates to the accuracy in prediction. Though such

information may be incorporated as user-controlled biases
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in the conformational search, a systematic and automatic

way to integrate this information with probability distri-

butions is necessary.

Clearly, structural distributions developed from data

which use correct 28 prediction will result in loss of

information when applied to cases with 28 assignment

errors. We, therefore, ask whether it is possible to develop

structure distributions which are optimized to give the best

possible predictions when error is known to be present.

These distributions will be constructed, as were those above,

from observed and background distributions. However, the

introduction of error in 28 prediction will change the relative

weighting of the two components. We seek to reoptimize

this weighting in the presence of 28 prediction errors.

We, therefore, outline a procedure to build structural

probability distributions that use as input three-state 28

predictions of specified accuracy Q3: This procedure can

also use another input fbad; the fraction of residues in helices

mispredicted as extended structures and vice versa (called

‘bad’ predictions) [4,42] to supplement Q3: We denote these

optimized distributions as Pðxðf;cÞm lx28P;YaaÞ to emphasize

that the input 28 classification is a prediction.

The width of the probability distribution can be measured

by the conditional entropy

Hðxðf;cÞlx28P; YaaÞ ¼
X

i;j

Hðxðf;cÞlx28Pi
; Yaaj

Þ pðx28Pi
;Yaaj

Þ

¼ 2
X

i;j

pðx28Pi
;Yaaj

Þ
X

k

pðxðf;cÞk lx28Pi
; Yaaj

Þ

ln½pðxðf;cÞk lx28Pi
;Yaaj

Þ� ð5aÞ

Like Eq. (3a), the expression can be re-written as an

expectation

Hðxðf;cÞlx28P; YaaÞ ¼ E{ 2 ln½Pðxðf;cÞlx28P;YaaÞ�} ð5bÞ

As before, an estimate of the entropy can be made by

approximating the expectation:

Hðxðf;cÞlx28P; YaaÞ ¼ 2ð1=ntotÞ
Xntot

k

ln½pðxðf;cÞk lx28P; YaaÞ� ð5cÞ

There are two major components to this procedure. First, the

probability distribution Pðxðf;cÞlx28P; YaaÞ is estimated using

Pðxðf;cÞj lYaaÞ as the background distribution:

pðxðf;cÞk lx28P;YaaÞ

¼ ½g pðxðf;cÞk lYaaÞ þ nðx28P; YaaÞ pðxðf;cÞk lx28P;YaaÞ

2 1� = ½gþ nðx28PlYaaÞ2 1� ð5dÞ

Second, the fact that the prediction accuracy is less than

100% is incorporated in the estimate. This is accomplished

by a Monte Carlo procedure which randomly generates the

28 structure at each prediction site in order to simulate the

output of an algorithm of given accuracy Q3: The procedure

also simulates the fraction of bad mispredictions, fbad:

The simulation is implemented as follows. (1) Both the

28 and the ðf;cÞ structures of each residue in the data set are

noted, and their respective frequencies are counted. (2) A

proportion, given by fbad; of residues of states H or an E is

randomly selected, and mispredictions of E or H are

substituted. (3) Another set of mispredictions are made

involving sites where the initial or final 28 state is C, to

generate a total proportion of wrong predictions correspond-

ing to 1 2 Q3: (4) The probability pðxðf;cÞlx28PÞ is calculated

using Eq. (5d), setting xðf;cÞ equal to the actual ðf;cÞ208

structure of the particular residue. (5) Steps 1–4 are applied

to every residue in the data set, and the entropy is then

calculated via Eq. (5c). (6) To strengthen the estimate for

the entropy, the procedure is applied to the whole data set as

many times as necessary for the average value to converge.

(We find that reasonable convergence is achieved when the

procedure is repeated 50 times.)

2.5. Secondary structure prediction algorithms outputting

three-state probability distributions

More sophisticated 28 prediction algorithms output a

probability distribution to describe the relative probabilities

of all possible states. For instance, a prediction output

for a residue can take the following form pQðHÞ ¼ 0:66;

pQðEÞ ¼ 0:10; pQðCÞ ¼ 0:24; instead of the single-state

output of H, which carries less information about the

prediction. In this work, we denote this three-state

probability output as PQðx28Þ; and specify its values by

{pðHÞ; pðEÞ; pðCÞ} (e.g. PQðx28Þ ¼ {0:66; 0:10; 0:24}). The

subscript Q is a reminder that these probabilities are

generated by a prediction algorithm.

One would like to interpret such probability distributions

as follows: given the incomplete information available to

the algorithm to specify the correct 28 state (e.g. inputs of

local sequence, multiple sequence alignments, sequence/

structural environments, etc.), the distribution is the relative

likelihood of finding a set of conditions consistent with each

of the three 28 forms. The biophysical underpinnings of the

prediction may be obscure, but the distributions are

essentially informatic in nature. They reflect our state of

ignorance—the residue in question does not actually exist in

three 28 states in the given proportion, but folds into one,

and only one, state.

All prediction algorithms can, in principle, output an

index resembling strength of prediction for each type of

secondary structure. Even those which output a single state

work implicitly with a scoring system, from which a

majority-rules decision is implemented to arrive at the

single-state output. Such indices can be transformed into

pseudo-probabilities by a simple normalization. Such

probabilities, however, do not necessarily describe the

true, underlying distribution. For instance, a particular

residue in the helical state may be correctly predicted by an
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algorithm outputting PQðx28Þ ¼ {0:80; 0:08; 0:12} as well as

another with PQðx28Þ ¼ {0:34; 0:33; 0:33}; if a majority-

rules decision is enforced. Clearly, these distributions

cannot both satisfy the underlying distribution. Black-box

algorithms, such as neural nets, may be able to output a

distribution, but their relevance may be limited to the

majority-rules condition from which they are trained.

This underlying distribution, which we denote as

Ptrueðx28Þ; is unknowable. The algorithms can only attempt

to approximate it. We will see that successful approxi-

mations to the underlying probability distribution should

assist in extracting the maximal amount of information from

the data set. On the other hand, inaccurate estimates can

mislead, and, therefore, may lead to a degradation in our

ability to extract information. It is thus necessary to

differentiate between these two kinds of outputs. In this

work, we measure the ability of both types of three-state

probability outputs to extract information, and thereby

gauge the added benefit of more detailed output as

compared to the simpler single-state output.

Given a probability distribution PQðx28Þ which describes

the relative probabilities of finding the particular residue in

each of the three 28 states, a sequence-specific hybrid

distribution in the ðf;cÞ space can be generated by the total

probability rule

PQðxðf;cÞlx28P3;YaaÞ ¼
X

i

Pðxðf;cÞlx28i
;YaaÞ pQðx28i

Þ ð6Þ

where the summation (indexed by i) goes through the three

28 states, and x28P3 denotes the 28 prediction with the three-

state probability output (as compared to x28P; which refers to

the single-state prediction output) (e.g. used in Ref. [39]).

The probability distribution Pðxðf;cÞlx28i;Yaa
Þ; which

describes the contour on the ðf;cÞ plane for each of the

20 amino acids in the 28 state i; is generated using methods

described in previous sections. (For instance, Fig. 7(A)

shows the distribution for helical alanine residues,

Pðxðf;cÞ208 lx28 ¼ H;Yaa ¼ AlaÞ:) The term pQðx28i
Þ is the

probability of state i; which modulates the features of the

resulting hybrid distribution, which is a weighted average of

the three canonical contour maps for the specific amino acid

Yaa: It is easy to see that if the prediction is perfect (i.e.

pQðx28c
Þ ¼ 1 for the correct state c; and 0 for the two

incorrect states), then PQðxðf;cÞlYaaÞ reduces to

Pðxðf;cÞlYaa;x28c
Þ; the ðf;cÞ distribution of the amino acid

Yaa in state c: We note that in order to produce the hybrid

distribution which best describes the ðf;cÞ propensities, the

term PQðx28Þ should, in principle, approximate the under-

lying probabilities Ptrueðx28Þ: Otherwise, the resulting hybrid

distribution will be unnecessarily broad.

To measure the informatic quantities involved in this

kind of prediction, we simulate the prediction process,

characterized by Q3 and fbad; by a Monte Carlo procedure.

Note that, in contrast to the Monte Carlo procedure outlined

in Section 2.4, we now work with a three-state 28 probability

distribution. We first describe the case when the three-state

probability output is consistent with the underlying

distribution (i.e. PQðx28Þ ¼ Ptrueðx28Þ). We wish to randomly

generate ‘true’ three-state distributions for each residue,

consistent with pre-selected values of Q3 and fbad: We will

then ask whether an alternative prediction algorithm, which

give the same prediction under a majority-rules selection

scheme, but which produces different output probabilities,

extracts the same amount of structural information from the

data set.

A prediction is generated for every residue in the data set.

The probability of a correct prediction, ptrueðx28 ¼ correctÞ

is designed to fluctuate around the given Q3 at each site,

with a set standard deviation: Q3 ¼ E{ptrueðx28 ¼ correctÞ}:

If the prediction is correct, then the probabilities for the

remaining two 28 states are generated by randomly dividing

the balance 1 2 Q3: For instance, if we are given ptrueðx28 ¼

correctÞ ¼ 0:80 for a particular residue in the coil state, we

generate the correct prediction with probability 0.80. The

probabilities for the helical and extended states are then

generated by the random division of the remainder, 0.20,

into two quantities, e.g. 0.13 and 0.07. Since we assume that

PQðx28Þ ¼ Ptrueðx28Þ; the distribution for this case is

PQðx28Þ ¼ {0:13; 0:07; 0:80}:

The chance that the prediction is incorrect is 1 2

ptrueðx28 ¼ correctÞ: If a residue is determined by the

Monte Carlo procedure to be incorrectly predicted, the

incorrect state must be selected following another con-

straint, fbad: This constraint affects only helical and extended

structures: if the residue in question falls in either of the two

structures, then the probability of generating a bad

prediction (an H mispredicted as E, and vice versa) follows

the probability3 fbad = ½ð1 2 Q3Þ fHþE�; where fHþE is the

fraction of non-coil structures (in our data set, fHþE ¼ 0:59).

For example, if the residue in question is in the helical state,

and the Monte Carlo procedure, with ptrueðx28 ¼ correctÞ ¼

0:64; determines that it be mispredicted, the probability of

generating E as a prediction is fbad = ½ð1 2 Q3Þ fHþE�: If the

simulation generates an E, then the balance 1 2 ptrueðx28 ¼

correctÞ ¼ 0:36 is divided between the two other structural

states H and C. The corresponding probability for the bad

(H $ E) prediction, in this case ptrueðx28 ¼ HÞ; was

designed to fluctuate around the generating probability

fbad = ½ð1 2 Q3Þ fHþE�: A possible output distribution for

this helical residue, after the enforced misprediction, is

PQðx28Þ ¼ {0:22; 0:64; 0:14}: One can see that this distri-

bution would mispredict the helical residue as E (because

its probability 0.64 is highest), under a majority-rules

regime.

This point-per-point generation of prediction across the

data set, using all the relevant probabilities, produces a

3 What we would like in this case is the probability of a bad prediction

(H $ E) given that it is a misprediction and the residue is either an H or

E. Therefore, by simple probability rules, fbad; the global probability of bad

predictions, must be transformed by dividing by the probability of

conditions added (i.e. ð1 2 Q3Þ and fHþE).
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single set of predictions when a majority-rules scheme with

global characteristics conforming to the two prior con-

straints Q3 and fbad: (To confirm, we explicitly counted the

number of correct predictions and the number of bad

mispredictions in every simulation, and found that these two

counts conform to Q3 and fbad with 99.9% accuracy.)

The simulation above describes the situation where the

three-state probability output is the underlying distribution.

This was assured because the distribution used to generate

guesses was the same as that used to simulate the three-state

probability distribution output. We also looked at the

informatic behavior of algorithms which output three-state

probability distributions not consistent with the underlying

distribution established by the Monte Carlo simulation,

PQðx28Þ – Ptrueðx28Þ: Two extreme cases were examined.

The first is a small perturbation from the underlying

distribution Ptrueðx28Þ to give PQðx28Þ ¼ Ptrueðx28Þ^ d: The

other case is that in which the underlying distribution is

completely ignored, and PQðx28Þ is generated randomly.

Both situations, however, are designed so that their

majority-rules predictions are consistent with the prediction

of each residue in the data set, arising from the original,

underlying (Monte Carlo generated) distribution.

To ensure this, we used the same Monte Carlo simulation

of the prediction process described above, but with some

important alterations. For the small perturbation case, we

systematically perturbed the Ptrueðx28Þ by a small value (by

0.05 and 0.10) in either direction to give PQðx28Þ: (As a

reminder, the former quantity, Ptrueðx28Þ; governed the

generation of the prediction, while the latter, PQðx28Þ; is

taken as the simulated output of the prediction algorithm.)

For the randomly generated PQðx28Þ case, we simply

conjured PQðx28Þ consistent with the real as well as the

predicted secondary structures generated by the Monte

Carlo simulation. For instance, if a particular helical residue

was mispredicted as extended (with Ptrueðx28Þ ¼

{0:20; 0:50; 0:30}Þ then the randomly generated PQðx28Þ

must have PQðEÞ . PQðHÞ and PQðEÞ . PQðCÞ (e.g.

PQðx28Þ ¼ {0:12; 0:75; 0:13}Þ:

With the definition of the conditional probability (Eq.

(6)), the computation of the residual entropy is straightfor-

ward. The residual entropy is computed using an equation

analogous to Eq. (5b),

Hðxðf;cÞlx28P3;YaaÞ ¼ E{ 2 ln½PQðxðf;cÞlx28P3; YaaÞ�} ð7aÞ

Again, an estimate of the entropy can be made by

approximating the expectation by a summation across the

entire data set, or

Hðxðf;cÞlx28P3; YaaÞ

¼ 2ð1=ntotÞ
Xntot

k

ln½pðxðf;cÞk lx28P3;YaaÞ� ð7bÞ

We find that even a single Monte Carlo pass through the

entire data set results in a reliable estimate for the various

entropic quantities of interest. Nonetheless, to ensure

reliability, we average quantities from 20 independent

passes through the entire data set.

3. Results and discussion

3.1. Uncertainty in determining the ðf;cÞ conformation of

protein chains with known secondary structure

Entropic quantities relating to the ðf;cÞ dihedral angle

space are calculated from structural probability distri-

butions, generated by the weighted combination of raw

frequencies and a properly chosen background distribution.

This combination, embodied in Eq. (4), is characterized by a

hybrid distribution coefficient g; chosen to return the lowest

residual entropy. Generating structural distributions via the

hybrid method protects against over-zealous partition of the

sequence and structure domains, and ensures that enough

data are available to provide meaningful statistics.

The over-all uncertainty in determining the ðf;cÞ208

conformation is given by the entropy Hðxðf;cÞ208 Þ; computed

with the uniform distribution as background. The depen-

dence of the entropy on the hybrid coefficient, shown in Fig.

2(A), exhibits a clear single minimum of 3.861 nats at the

optimum hybrid coefficient g ¼ 266:

We use the resulting hybrid distribution Pðxðf;cÞ208 Þ of the

universe of structures as the background distribution to

generate Pðxðf;cÞlx28Þ; the distribution of backbone phi–psi

conformation given the correct three-state 28 conformation.

The optimal probability distribution (at g ¼ 173) yields a

residual entropy Hðxðf;cÞ208 lx28Þ of 3.279 nats. (The depen-

dence of Hðxðf;cÞ208 lx28Þ on g is shown in Fig. 2(B).) The

same procedure was implemented to search for the optimum

hybrid coefficient associated with Hðxðf;cÞ58 lx28Þ; the case

where the phi–psi space is subdivided into 72 £ 72 equally

sized bins. This search, summarized in Fig. 2(C), identifies

the hybrid coefficient ðg ¼ 1855Þ which yields the lowest

residual entropy of 5.845 nats. The latter case, in which the

Fig. 2. The dependence of the residual entropy on the hybrid coefficient g: (A) Measuring Hðxðf;cÞ208 Þ: The uniform distribution was chosen as the background

distribution to build the distribution of ðf;cÞ dihedral angles discretized into an 18 £ 18 grid (208 resolution). The plot exhibits a clear single minimum of

3.861 nats at the optimum hybrid coefficient g ¼ 266: (B) Measuring Hðxðf;cÞ208 lx28Þ: We use the resulting hybrid distribution Pðxðf;cÞ208 Þ of the universe of

structures as the background distribution to generate Pðxðf;cÞlx28Þ; the distribution of backbone phi–psi conformation given the correct three-state 28

conformation. The optimal probability distribution (at g ¼ 173) yields a residual entropy Hðxðf;cÞ208 lx28Þ of 3.279 nats. (C) Measuring Hðxðf;cÞ58 lx28Þ: The

search for the optimum hybrid coefficient associated with Hðxðf;cÞ58 lx28Þ; the case where the phi–psi space is subdivided into 72 £ 72 equally sized bins

identifies the hybrid coefficient ðg ¼ 1855Þ which yields the lowest residual entropy at 5.845 nats.
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phi–psi space is subdivided into more unique states (5184

vs. 324), leads to a larger hybrid coefficient, which is

required to buffer sparser raw frequencies. One expects the

value of the optimum hybrid coefficient to continue to rise

as finer partitions are made to the structure domain.

Conversely, the computation for Hðxðf;cÞ908 lx28Þ; from a

coarse partition of the phi–psi space, generates a low hybrid

coefficient, g ¼ 3: Since the same data set is subdivided into

fewer unique structural states, the resulting raw frequency

distribution is a more adequate estimate of the true

probability distribution Pðxðf;cÞ908 lx28Þ; and the contribution

of the background is diminished.

Table 1 summarizes the results of calculating various

entropic quantities at different levels of structural discreti-

zation. Major results and observations are as follows.

3.1.1. The residual entropy associated with backbone

conformation when the three-state secondary structure is

known fully is still very high (i.e. Hðxðf;cÞlx28Þq 0).

This observation highlights the major theoretical and

computational difficulty in attempting to ‘fold’ 28 elements

into their native 3D structure. The high residual entropy

value, Hðxðf;cÞ208 lx28Þ ¼ 3:279 nats, explains the modest

performance of computational schemes which attempt to

fold known segments of helices and sheets of a given protein

chain. Moreover, even within the organized segments, such

as helices and sheets, the residual entropy Hðxðf;cÞ208 lx28 ¼

{H;E}Þ is still large: Hðxðf;cÞ208 lx28 ¼ HÞ ¼ 2:003 nats and

Hðxðf;cÞ208 lx28 ¼ EÞ ¼ 3:218 nats.

The major challenge lies in finding the backbone

conformation of residues which are in the coil state. The

average residual entropy of a given residue in the coil state,

Hðxðf;cÞ208 lx28 ¼ CÞ; is 4.362 nats, a value which emphasizes

the wide variability of phi–psi dihedral angles in coil

residues. Coil segments are the ‘flexible’ hinges connecting

helices and sheets in a packed state, and folding secondary

structures to form native tertiary interactions is equivalent to

searching the backbone ðf;cÞ of coil segments for the

correct packing of helices and sheets. Even if canonical

helical and extended structures for the structured segments

are assumed, the multitude of ways they can be organized

into a tertiary domain is reflected in the high residual

Table 1

Entropies and residual entropies of interest

Entropy terma

Resolutionb

Background distributionc Optimal gd Entropy value (nats)

Hðxðf;cÞÞ

908 Uniform: B ¼ 1=m2 18 1.703

458 65 2.567

208 266 3.860

108 784 5.065

58 2124 6.402

Hðxðf;cÞlx28Þ

908 Universe: B ¼ pðxðf;cÞÞ 3 1.182

458 55 2.031

208 173 3.279

108 568 4.482

58 1855 5.845

Hðxðf;cÞlYaaÞ

908 Universe: B ¼ pðxðf;cÞÞ 90 1.542

458 290 2.371

208 859 3.622

108 2063 4.803

58 4863 6.106

Hðxðf;cÞlx28;YaaÞ

908 Singlet: B ¼ pðxðf;cÞlYaaÞ 9 1.057

458 32 1.881

208 98 3.118

108 258 4.345

58 810 5.755

Hðxðf;cÞlx28P; YaaÞ

Singlet: B ¼ pðxðf;cÞlYaaÞ see Fig. 8 for values at different levels of Q3 and fbad

a The form of the equations, a weighted combination of raw frequencies and the chosen background distribution, used to calculate these terms are discussed

in the text.
b Resolution refers to the size of square bins used to evenly divide the ðf;cÞ plane.
c Background component used to calculate the associated entropy. These terms must also be calculated accordingly, using the same strategy of optimizing

the weighted combination of a raw frequency and a proper background distribution.
d Hybrid coefficients which give the lowest entropy.
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entropy. Furthermore, the complexity of folding rigid 28

segments depends on the fraction of coil residues in the

protein chain, since 4.364 nats is the average residual

entropy for each ðf;cÞ dihedral angle pair in the coil state.

3.1.2. The uncertainty in determining backbone

conformation even after complete knowledge of three-state

secondary structure is much greater than the uncertainty

resolved by an accurate assignment of secondary structure

(i.e. Hðxðf;cÞlx28Þ . Hðx28ÞÞ.

The entropy associated with determining the correct 28

assignment, Hðx28Þ; in our data set, composed of 41.15%

coil, 36.42% helical, and 22.43% extended/sheet, is

1.069 nats per residue, from the Shannon entropy equation

(Eq. (1)). (Because there are only three possible states, and

there is a large amount of data to fill these states with

observations, the calculation does not require using a hybrid

distribution approximation. Instead, Eq. (1) can be used

directly.)

Informatically, it is more difficult to find the correct

ðf;cÞ208 given its 28 conformation ðHðxðf;cÞ208 lx28Þ ¼

3:279 nats) than it is to determine the 28 assignment itself

ðHðx28Þ ¼ 1:069 nats), indicating that even if near-perfect

accuracy could be achieved by a ‘fantasy’ 28 structure

prediction algorithm, the protein 3D conformation would be

difficult to predict. We note that the quantity Hðxðf;cÞ208 Þ is

magnitudes higher than Hðx28Þ; pointing to the greater

challenge in finding the actual phi–psi conformation of the

backbone, compared to identifying its correct three-state

secondary structure.

3.1.3. Including some sequence information in generating

probability distributions helps lower the residual entropy

associated with the backbone conformation (i.e.

Hðxðf;cÞlx28Þ . Hðxðf;cÞlx28;YaaÞÞ.

Generating amino acid-specific probability distributions

lowers the residual entropy of the correct ðf;cÞ given full

knowledge of the three-state 28 class. This procedure

generates 20 different kinds of probability distributions,

one for each amino acid z, Pðxðf;cÞlx28;Yaa ¼ zÞ: Because

we would like to measure the effect of 28 assignment on the

ðf;cÞ propensity, we take as the background distribution in

this instance Pðxðf;cÞlYaa ¼ zÞ for a specific amino acid z.

The latter distribution is in turn derived using a similar

hybrid method, with the universe of structures Pðxðf;cÞÞ as

background.

The average value per residue of Hðxðf;cÞ208 lx28;YaaÞ is

3.118 nats, which is significantly lower than

Hðxðf;cÞ208 lx28Þ ¼ 3:279 nats. Including some sequence

knowledge reduces the uncertainty of the backbone

conformation given its three-state 28 assignment. The

entropy is still substantial, however, indicating that the

problem is far from solved. Nonetheless, translating 28 state

information of a residue into ðf;cÞ propensities should

involve its amino acid identity because the resulting

distribution is narrower.

3.1.4. The level of detail in the structural description affects

the amount of information that can be extracted from the

database.

It should come as no surprise that searching for the

correct ðf;cÞ bin becomes more difficult as the number of

unique bins increases. This is reflected in the increasing

values for Hðxðf;cÞÞ as the resolution is increased. Results

using various levels of partition are summarized in Table 1.

The same pattern can be seen for Hðxðf;cÞlx28Þ and

Hðxðf;cÞlx28;YaaÞ:

What we are more concerned with is the amount of

information latent in knowledge of the three-state secondary

structure. The quantity of interest is the information gain.

Table 2 contains the relevant information gain

Igðx28;YaaÞ ¼ Hðxðf;cÞÞ2 Hðxðf;cÞlx28;YaaÞ ð8Þ

Information gain measures the information extracted as a

result of the introduction of one or more factors, calculated

by subtracting the entropy of the distribution conditioned on

the new factor(s) from the entropy without considering the

same factors. In the analyses that follow, we use several

forms of information gain. Our goal is to gauge the success

of specific factors in extracting information from the protein

data set.

One can see from Table 2 that the information gain peaks

at 208 resolution. These calculations illustrate the fact,

which we investigated in recent work [1], that there exists an

optimal level of structural resolution given a finite data set.

The amount of extractable information initially increases as

the structural partition becomes finer, but diminishes as one

reaches a resolution that cannot be supported by the data set

size.

3.1.5. The difficulty in determining backbone conformation

depends strongly on amino acid identity. The information

gain due to knowledge of 28 state is the same for all amino

acid residue types.

Residue identity plays an important role in determining

backbone conformation. Calculations of the entropy associ-

ated with the ðf;cÞ distribution for each amino acid,

summarized in the second column of Table 3, show the

range of backbone conformation allowed by the various side

chains. The values cover the range [2.659, 3.991 nats] for

isoleucine and glycine, respectively. The residual entropy is

decreased upon introduction of information relating to

correct 28 state, Hðxðf;cÞlx28; Yaa ¼ zÞ; as shown in the third

column of Table 3. Each amino acid benefits from this

information, since specifying a 28 state restricts the range of

dihedral angles it may take. The actual effect of 28

information is measured by the information gain

Igðxðf;cÞlx28; YaaÞ ¼ Hðxðf;cÞlYaaÞ2 Hðxðf;cÞlx28;YaaÞ ð9Þ

for each amino acid, found in the fourth column of Table 3.

The effect of knowing the 28 state is fairly uniform across all

amino acids, with a range of [0.401, 0.596 nats] for aspartic
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acid and isoleucine, respectively, around an average of

0.504 nats, with the exception of proline at 0.277 nats. The

ability to specify the backbone ðf;cÞ of every amino acid

residue even with perfect knowledge of its 28 state is

hampered by the diversity of possible backbone confor-

mations within each 28 state.

3.2. Entropy resolved by 28 prediction algorithms of limited

accuracy, and the systematic uncertainty caused by

prediction errors.

Two parameters are used to describe the extent of these

mispredictions: Q3; or three-state accuracy, is the proportion

of correct predictions; fbad is the fraction of all predictions

that mistake an H for an E and vice versa. We summarize the

results of our Monte Carlo simulations as follows.

3.2.1. There is an optimum probability distribution that

minimizes the residual entropy when 28 prediction is

imprecise.

The search for the ðf;cÞ probability distribution which

contains the lowest residual entropy Hðxðf;cÞ208 lx28 ¼

x28P; YaaÞ is a compromise between believing the prediction

x28P and hedging against errors. In a later section, we give

an example of such a compromise, using the construction of

optimal distributions of backbone conformation of alanine,

given that it is predicted to be in the helical state. The

pressure of these competing factors makes it necessary to

reoptimize the value of g in the hybrid distribution.

Examples of the optimization of the hybrid coefficient

can be seen in Fig. 3. The procedure was applied to a range

of accuracies, Q3; while the fraction of bad predictions, fbad;

was set at 0.04. The residual entropy reaches clear minima

Table 2

Information gain from knowledge of correct secondary structure

Resolutiona

(8)

Information gainb, (nats)

Igðx28; YaaÞ

Structural information stored in secondary structurec, (%)

Igðx28; YaaÞ=Hðxðf;cÞÞ

90 0.646 37.9

45 0.686 26.7

20 0.741 19.2

10 0.721 14.2

5 0.647 10.1

a Resolution refers to the size of square bins used to evenly divide the ðf;cÞ plane.
b Information gain for ðf;cÞ structure from knowledge of true three-state 28 conformation, and using amino acid identity information of the residue.
c The proportion of uncertainty resolved by knowledge of true three-state 28 conformation, and using amino acid identity of information of the residue. This

is effectively the fraction of ðf;cÞ structural information, under various resolutions, resolved by secondary structure.

Table 3

Sequence-dependent information gain of the ðf;cÞ208 conformation due to knowledge of correct secondary structure

Amino acid z Entropya, (nats)

Hðxðf;cÞ208 lYaa ¼ zÞ

Residual entropyb, (nats)

Hðxðf;cÞ208 lx28; Yaa ¼ zÞ

Information gainc, (nats)

Iðxðf;cÞ208 lx28; Yaa ¼ zÞ

A 3.360 2.797 0.563

C 3.815 3.352 0.463

D 3.942 3.541 0.401

E 3.425 2.930 0.495

F 3.709 3.141 0.568

G 4.449 3.991 0.458

H 3.938 3.275 0.463

I 3.255 2.659 0.596

K 3.630 3.134 0.496

L 3.370 2.777 0.593

M 3.459 2.892 0.567

N 4.079 3.662 0.416

P 2.948 2.671 0.277

Q 3.521 3.005 0.516

R 3.618 3.091 0.527

S 3.814 3.375 0.439

T 3.748 3.252 0.496

V 3.346 2.774 0.572

W 3.553 3.040 0.513

Y 3.719 3.154 0.565

a Entropy of ðf;cÞ structure, at 208 resolution, with amino acid information only.
b Residual entropy after knowledge of correct 28 structure and with amino acid information.
c Information gain due to knowledge of correct 28 structure and with amino acid information.
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at 3.499, 3.415, and 3.312 nats with g ¼ 3043; 1592, and

810 for Q3 ¼ 0:7; 0.8, and 0.9, respectively. From these

examples, the residual entropy can be seen to decrease as the

prediction accuracy increases. The curve for the optimiz-

ation at perfect accuracy, also in Fig. 3, shows a shallow

minimum of 3.118 nats at g ¼ 98:

The pattern of decreasing hybrid coefficients g illustrates

the correct behavior of Eq. (5d) in balancing the two

opposing forces. Low hybrid coefficients favor the belief

that the prediction is correct, while high hybrid coefficients

favor the opposite possibility. The optimum hybrid

coefficient falls somewhere in the middle. As the prediction

accuracy rises, the belief that the prediction is correct grows

stronger, favoring lower hybrid coefficients.

3.2.2. The detrimental effect of low accuracy and a high

fraction of bad predictions on the latent information in the

output of 28 prediction algorithms is significant

The residual entropy increases as prediction accuracies

decrease. Another way to understand the influence of the

quality of prediction on the amount of extractable

information is to measure the information gain directly.

The quantity of interest here is the information gain

attributed to the knowledge of the prediction,

Igðx28PÞ ¼ Hðxðf;cÞlYaaÞ2 Hðxðf;cÞlx28P;YaaÞ ð10Þ

Fig. 4 shows the effect of varying accuracy and fraction of

bad predictions on the amount of information latent in

predictions. The increase in information gain is exponential

with accuracy Q3: At low accuracies, the information gain is

negligible; only at accuracy levels above 0.55 does the gain

become significant. The exponential behavior also points to

the fact that increases in accuracy beyond the current level

will be rewarded by higher increases in information

extraction.

The fraction fbad should also affect the amount of residual

entropy; i.e. the greater the fraction of catastrophic

misprediction, the higher the entropy. This pattern is

observable in Figs. 4 and 5. While the effect of fbad on

information gain is not as dramatic as that of accuracy, the

decrease in information gain becomes severe at large values

of fbad: Limiting catastrophic mispredictions leads to an

improvement in prediction quality even without actually

strengthening the accuracy.

3.2.3. The effect of structure discretization is significant.

As previously shown, the amount of information from

predicted secondary structure depends on the resolution of the

backbone structural descriptor. Figs. 5 and 6 show this clearly.

In this work, the 208 resolution seems to be the most efficient.

Describing the conformation at lower resolution misses details

that can decrease the residual entropy, while higher resolution

is counterproductive because of limited data availability.

3.2.4. Generating optimum conditional probability

distributions.

Analysis of the set of probability distributions corre-

sponding to the alanine residue predicted as H,

pðxðf;cÞlx28P ¼ H;Yaa ¼ AÞ; in Fig. 7, reveals the effect of

prediction errors. The first figure of the series of contour

maps is the ðf;cÞ distribution of all helical alanine residues

found in the data set, Pðxðf;cÞlx28 ¼ H;Yaa ¼ AlaÞ; and the

last is the distribution of all alanines, irrespective of 28 state.

The first and last figures in the series depict the extreme

cases of information carried by a prediction of H. If a

prediction scheme carries a 100% accuracy rate, then the

former figure represents the ðf;cÞ distribution of those

alanine residues assigned as helical. If the accuracy rate is

extremely low (approaching randomized assignment), the

latter ðf;cÞ distribution is the most conservative choice to

Fig. 3. Optimizing the residual entropy Hðxðf;cÞ208 lx28P;YaaÞ at different accuracy levels Q3 by varying the hybrid coefficient g: The fraction of bad predictions,

fbad; was set at 0.04. The residual entropy reaches clear minima at 3.499, 3.415, and 3.312 nats with g ¼ 3043; 1592, and 810 for 70, 80, and 90%, respectively.

In contrast, the curve for the optimization at perfect accuracy ðQ3 ¼ 100%Þ has a minimum of 3.118 nats at g ¼ 98:
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describe the backbone conformation of alanine residues

predicted as helical. At such low accuracy rates, the 28

prediction is irrelevant, and our ignorance of the secondary

structure demands that we describe the ðf;cÞ of any alanine

residue (whether predicted as H, E, or C) as simply

pðxðf;cÞlYaa ¼ AÞ:

The advantage of using the hybrid method to approxi-

mate probability distributions becomes apparent when

dealing with algorithms of intermediate accuracy. To

construct such probability distributions, we use Fig. 7(A)

as one component of the hybrid distribution and Fig. 7(E) as

the other, weighted by a hybrid coefficient g selected to

return the lowest residual entropy. For instance,

Fig. 7(B)–(D) shows the backbone distributions, generated

automatically by the optimization procedure for cases

where the accuracy rates are 90, 70, and 55% respectively,

and the fbad are 0.02, 0.04, and 0.10, respectively. In these

cases, we observe that the helical ðf;cÞ distribution,

concentrated around ð2608;2408Þ; is supplemented by a

significant occupancy in the extended region (positive

values of c). Moreover, the extent of mixing depends on the

accuracy of prediction and the proportion of catastrophic

predictions.

In these compromise distributions, any true E that is

wrongly predicted as H will be correctly found more

frequently using Pðxðf;cÞlx28P ¼ H; Yaa ¼ AÞ rather than

Pðxðf;cÞlx28 ¼ H; Yaa ¼ AÞ: The unavoidable trade-off is

that the backbone conformation of an alanine correctly

Fig. 4. The effect of varying accuracy (Q3) and fraction of bad predictions (fbad) on the amount of information latent in predictions, Igðx28PÞ: The values of fbad

used are 0.02 (filled diamonds), 0.04 (empty squares), and 0.06 (filled triangles). At low accuracies, the information gain is negligible; only at accuracy levels

above 0.55 does the gain become significant.

Fig. 5. The influence of the ðf;cÞ resolution on information gain Igðx28PÞ at different levels of fraction fbad: The accuracy level Q3 is kept at 70%. At most levels

of fbad; the resolution which yields the highest information gain is 208.
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predicted as H is easier to locate using pðxðf;cÞlx28 ¼ HÞ

than pðxðf;cÞlx28P ¼ HÞ: These competing situations are

balanced by the hybrid procedure. While H and E residues

with canonical backbone conformations favor lower g; the

significant fraction of catastrophic predictions necessitate

that peripheral regions are represented with non-zero

probabilities, and this is facilitated by a high g:

Given a particular Q3 and fbad; our procedure generates

contour maps Pðxðf;cÞlx28P;YaaÞ for each of the 20 amino

acids Yaa; in the three kinds of 28 prediction x28P; for a total

of 60 maps. Each pair of unique values for the parameters

Q3 and fbad generate 60 characteristic contour maps, which

incorporate the optimal correction for the accuracy of

prediction.

3.2.5. The possibility of prediction errors results in

substantial loss in information gain.

The net information gain brought about by a 28 prediction

algorithm with a given accuracy (and its associated fbad), can

be measured by Eq. (10). This can be compared to Eq. (9),

the information gain due to knowledge of the correct 28

state, to yield the fraction of information retained despite

errors in prediction:

uretðx28PÞ ¼ Igðx28PÞ = Igðx28Þ ð11Þ

We are interested in the dependence of this fraction on

the prediction accuracy Q3 and the fraction of bad

predictions fbad: A value of uret near zero means that,

because of the extensive prediction errors, no information

can be gathered from a faulty 28 prediction output.

Conversely, a value of uret near unity characterizes

successful prediction schemes. Fig. 8 shows our calculations

for a range of Q3 [0.25–0.95] and a corresponding range of

fbad; beginning at 0.01 and ranging up to the highest level

permitted by Q3:

The loss of information due to inaccurate prediction is

severe. For any level of fbad; predictions with accuracies of

55% or below retrieve less than 10% of the information

available to specify backbone conformation from secondary

structure. Typical accuracies of 70–75%, with fbad ¼

0:03–0:05; lose as much as 70% of the information due to

mispredictions. Moreover, even an algorithm giving 95%

accuracy returns less than 75% of the information

encoded in secondary structure, although this level of

success in predicting secondary structure would be

exceptional.

3.2.6. What is a bad prediction?

The so-called bad predictions are those that confuse

helical with sheet segments, and vice versa. We can measure

the information loss specific to such catastrophic mispredic-

tions. For every wrong 28 prediction, we can measure the

amount of entropy it took to locate the observed ðf;cÞ208 in

the wrong probability distribution pðxðf;cÞlx28P ¼ wÞ and

compare it to the amount of entropy it would have

taken to find the observed ðf;cÞ208 state in the correct

distribution pðxðf;cÞlx28P ¼ cÞ: The entropy cost for

specific instances for all six possible misprediction

pairs ðc;wÞ ¼ ðH;CÞ (an H residue mispredicted as C),

(H,E), (E,C), (E,H), (C,H), and (C,E) could be averaged

to measure the amount of information lost in improperly

predicting the 28 state:

kIlossðc;wÞl ¼ ½1=nðc;wÞ�
Xnðc;wÞ

i

{ln½2pðxðf;cÞlx28P ¼ wÞi�

2ln½2pðxðf;cÞlx28P ¼ cÞi�} ð12Þ

where nðc;wÞ is the number of mispredictions in the Monte

Carlo procedure, and the index i goes through every

instance. The average information losses, computed for all

Fig. 6. The influence of the ðf;cÞ resolution on information gain Igðx28PÞ at different levels of accuracy Q3: The fraction fbad is kept at 0.04. The drop in

information gain at higher resolutions (5–108) is caused by the limited size of the structural data set.
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six misprediction pairs, are listed in Table 4. Not

surprisingly, the two pairs that have been called bad,

(E,H) and (H,E), have the two highest information losses for

all levels of prediction accuracy. Another pair, (H,C), shows

a comparable information loss. This is the case when a

residue in a helical segment is incorrectly predicted to

be in the coil state. The search for a helical dihedral

angle pair in the probability distribution of the coil

state, Fig. 1(C), is not as difficult, since the helical

region is amply represented in the distribution. However,

helical dihedral angles are the easiest to find if the correct

probability distribution is used (Fig. 1(A)), and the loss in

the efficiency is reflected in the high kIlossðH;CÞl: The least

serious mispredictions are the (C,E) and (E,C) pairs, as the

probability distribution of coil and extended dihedral angles

have similar coverage.

This general trend—increasing cost of misprediction as

the accuracy level rises—highlights yet again the competing

factors in building a compromise distribution. As the

canonical ðf;cÞ distributions are favored at high accuracy

Fig. 7. Propensity distributions in the ðf;cÞ208 dihedral angle space of alanine predicted as helical, or pðxðf;cÞlx28P ¼ H; Yaa ¼ AÞ: The figures represent contour

maps at different levels of accuracy Q3 and fbad : (A) 100%, (B) 90% ðfbad ¼ 0:02Þ; (C) 70% (0.04), (D) 55% (0.10). (E) The ðf;cÞ distribution of all alanine

residues in the data set. The intersections of the grid lines represent the midpoint of the 208 bin. For example, the intersection at ð270; 1508Þ represents the bin

bounded by the f and c ranges of ½2808;2608� and ½140; 1608�; respectively. Contour lines represent grades in probability in increments of 0.0015, starting

from zero probability. Only the first 10 contour lines are included in this figure for the purpose of illustration, with the tenth contour line representing

probabilities greater than 0.015. The peaks in probability of the helical phi–psi angle pair occur in the vicinity of 0.25. This and other details (pertaining to

p . 0:015) are preserved in the actual probability distributions computed, but are not included in these figures for simplicity.
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levels, the regions where mispredictions occur will not

have as high a probability value as one would like. On

the other hand, the actual number of mispredictions is

low, while correct predictions see higher probability

values, causing a general increase in information gain.

However, the problem is magnified because of the

sizeable penalty for locating the correct ðf;cÞ values in

the unfavorable contour map arising from an erroneous

prediction.

3.2.7. Single-state prediction outputs accompanied by an

accuracy index show a modest increase in average

information gain when one calibrates hybrid distributions

specific to the accuracy index.

Ideally, we would like 28 prediction algorithms to output

a confidence index in order to assess the likelihood that the

prediction is true. This additional output can be used to

tailor the structural distribution to a particular prediction

conveniently, if one knows the precise relationship between

Fig. 7 (continued )

Fig. 8. The dependence of the fraction of information retention uret on the accuracy level Q3 and fraction of bad predictions fbad: The figure summarizes

calculations made for a range of Q3 [0.25–0.95] and a corresponding range of fbad; beginning at 0.01 and ranging up to the highest level permitted by Q3:
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the confidence index and the actual fraction of correct

predictions. While it is reasonable to assume that there is a

linear relationship between these two variables, it is still

necessary to translate the index range (usually within 0–9)

into a form more directly related to Q3 (i.e. % accuracy).

The accuracy rate of a particular prediction instance,

which we shall denote as q3; is operationally similar to the

global accuracy rate Q3; for the purpose of generating

structural distributions. For instance, if presented with an

alanine predicted as helical with a confidence index which

corresponds to 55% accuracy ðq3 ¼ 0:55Þ; we generate the

propensity shown in Fig. 7(D). On the other hand, if at another

location, we encounter an alanine predicted as helical but with

an index corresponding to 90% accuracy, the distribution

shown in Fig. 7(B) more appropriately describes its structural

propensity. The important element in utilizing the additional

information from such confidence indices is a description of

the relationship between the confidence index and the actual

fractional success of prediction (e.g. [32]).

Tailoring the hybrid distribution to the confidence index

gives a modest increase in the average information gain. As

established previously, information gain increases exponen-

tially with accuracy. That is, Eðf ðxÞÞ $ f ðEðxÞÞ for any convex

function f ; implying EðIgðq3ÞÞ . IgðEðq3ÞÞ (since the equality

does not occur within the region of interest). The latter quantity

is just IgðQ3Þ; the information gain arising from a prediction

scheme with a known global accuracy rate Q3: As an

illustration, let us take information gain measurements from

three different Q3 (all with fbad ¼ 0:04): 0.0641, 0.1237, and

0.2077 nats for Q3 ¼ 0:60; 0.70, and 0.80, respectively

(Fig. 8). If we are given two predictions of q3 ¼ 0:60 and

0.80, the mean information gain is (0.0641 þ 0.2077)/

2 ¼ 0.1359 nats. However, the mean q3 ¼ ð0:60 þ 0:80Þ=2 ¼

0:70; which gives an information gain of 0.1237 nats.

Therefore, indicating the accuracy index for each prediction

should result in a modest increase in the information gain.

3.3. Entropy resolved by secondary structure predictions

outputting probability distributions, and the systematic

uncertainty caused by prediction errors.

We summarize results of our Monte Carlo simulation of

outputs involving three-state probability outputs below.

3.3.1. Three-state probability outputs not consistent with the

underlying distribution, PQðx28ÞPtrueðx28Þ; lead to a

significant reduction in the ability to extract structural

information from 28 prediction.

It is important that PQðx28Þ approximate Ptrueðx28Þ as

close as possible. The difference in residual entropy

Table 4

Average cost of misprediction

Q3 and fbad
a Secondary structureb Cost of mispredictionc,

, Ilossðc;wÞ .

True, c Predicted, w

Q3 ¼ 60%; fbad ¼ 0:05 H E 0.717

H C 0.678

E H 0.881

E C 0.394

C H 0.471

C E 0.207

Q3 ¼ 70%; fbad ¼ 0:04 H E 1.083

H C 0.967

E H 1.348

E C 0.552

C H 0.719

C E 0.313

Q3 ¼ 80%; fbad ¼ 0:03 H E 1.535

H C 1.258

E H 1.922

E C 0.695

C H 1.050

C E 0.455

Q3 ¼ 90%; fbad ¼ 0:02 H E 2.141

H C 1.563

E H 2.661

E C 0.819

C H 1.475

C E 0.726

a Q3; three-state accuracy; fbad; fraction of bad predictions (H $ E).
b Three-state secondary structure: H ¼ helix; E ¼ extended; C ¼ coil.
c Calculated using Eq. (12).
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between output probabilities PQðx28Þ that are equivalent to

Ptrueðx28Þ and those that are uncorrelated, is large (shown in

columns 4 and 5 of Table 5). The degradation in information

caused by outputs barely resembling the underlying

probabilities is highlighted by the fact that the magnitude

of Hðxðf;cÞlYaa), the structural entropy prior to any 28

prediction, is comparable to that of Hðxðf;cÞlx28P3;YaaÞ; the

entropy after introduction of a three-state probability

prediction, but with PQðx28Þ – Ptrueðx28Þ: Whereas there is

a modest information gain when one uses a prediction

algorithm of moderate quality (Q3 ¼ 0:70 and fbad ¼ 0:04)

and which outputs PQðx28Þ ¼ Ptrueðx28Þ (i.e.

3.62 2 3.44 ¼ 0.18 nats), there is actually a loss in

information when one uses another algorithm with the

same global prediction accuracy but with PQðx28Þ unrelated

to Ptrueðx28Þ (i.e. 3.62 2 3.66 ¼ 20.04 nats). When faced

with such algorithms (high global Q3; but

PQðx28Þ – Ptrueðx28Þ), it is actually advisable to force the

PQðx28Þ into a majority-rules decision, and then proceed

with methods designed for single-state prediction outputs to

assemble a more informative ensemble of ðf;cÞ structure

distributions.

3.3.2. The improvement in structural information extraction

in going from the single-state 28 output to the three-state

probability output is marginal.

Comparison between values in columns 3 and 4 of

Table 5 reveals that the improvement in going from single-

state to three-state probability outputs is below 0.10 nats.

Moreover, the amount of structural information generated

by well-performing single-state prediction algorithms may

eclipse three-state prediction algorithms of lower accuracy.

For instance, a single-state prediction with Q3 ¼ 0:8 and

fbad ¼ 0:04 yields more information than a three-state

probability prediction with Q3 ¼ 0:7 and fbad ¼ 0:04 (3.41

and 3.44 nats, respectively).

It should be emphasized that the ability to extract

information from single-state 28 predictions relies on

implementation of the methodology, described in this

work, to generate optimal hybrid distributions. The added

burden of approximating Ptrueðx28Þ well, in order to reap this

small benefit, may not be worth the risk of mis-information.

3.3.3. Information from generated hybrid distributions is

relatively stable with respect to slight perturbations of the

three-state probability outputs.

The perturbation of probabilities was accomplished by

altering the underlying ptrueðx28 ¼ correctÞ by a small

fraction d; and then adjusting the probabilities of the other

two structural states by d=2 each in the other direction. If

the adjustment causes any probability value to exceed the

allowable range of probability ð0 # p # 1Þ; then the

perturbation is aborted, and the original underlying

probability Ptrueðx28Þ is kept as PQðx28Þ: The intention is

not to measure the residual entropy exactly at the particular

perturbation, but to gauge the stability of the residual

entropy when perturbations are made to the underlying

probability distribution Ptrueðx28Þ:

From results summarized in Table 6, it seems that at

small levels of d examined ð^0:05;^0:10Þ; the residual

entropy does not increase drastically (#0.02 nats). While it

is important that the PQðx28Þ approximate Ptrueðx28Þ; the two

distributions do not have to be identical: it is acceptable that

PQðx28Þ < Ptrueðx28Þ: However, at slightly larger pertur-

bations (^0.20, in Table 6), the increase in residual entropy

becomes significant (#0.07 nats). The degradation in

information should become severe as the deviation between

PQðx28Þ and Ptrueðx28Þ increases.

3.3.4. How does one determine if PQðx28Þ < Ptrueðx28Þ?

The effectiveness of the three-state probability outputs

in generating informative structural distributions rests on

the condition that PQðx28Þ < Ptrueðx28Þ: It is difficult to

establish that this condition holds, for Ptrueðx28) is

essentially unknowable. However, one may more con-

fidently assume that the resulting PQðx28Þ is good when

Table 5

Residual entropy from three-state probability outputs

Global prediction

conditionsa

Residual entropyb, (nats)

Hðxðf;cÞ208 lx28P;YaaÞ

Residual entropyc, (nats)

Hðxðf;cÞ208 lx28P3;YaaÞ and

PQðx28Þ ¼ Ptrueðx28Þ

Residual entropyd, (nats)

Hðxðf;cÞ208 lx28P3;YaaÞ and

PQðx28Þ – Ptrueðx28Þ

Q3 fbad

0.65 0.05 3.53 3.49 3.68

0.70 0.04 3.50 3.44 3.66

0.70 0.07 3.51 3.44 3.70

0.75 0.04 3.46 3.39 3.63

0.80 0.04 3.41 3.33 3.58

0.85 0.03 3.37 3.28 3.48

0.90 0.02 3.29 3.20 3.35

0.95 0.01 3.21 3.16 3.21

a Q3; three-state accuracy; fbad; fraction of bad predictions (H $ E).
b Residual entropy from single-state output.
c Residual entropy from three-state probability schemes which have as outputs the true underlying probabilities.
d Residual entropy from three-state probability schemes which have randomly generated outputs, without regard to the true underlying probabilities.

A.D. Solis, S. Rackovsky / Polymer 45 (2004) 525–546 543



the algorithms arise from direct probabilistic method-

ologies, like the GOR algorithm [35]. Computational

methods utilizing black boxes, such as neural nets, while

they may be implicitly based on probabilistic models, are

trained to reproduce only on–off data. They may make

predictions with high accuracy, but the resulting decision

scores may be meaningless beyond their function as votes

in a majority-rules decision. Simply normalizing them to

resemble probabilities does not turn them into viable

estimates for Ptrueðx28Þ:

A necessary but not sufficient condition on a probability-

based PQðx28Þ score is that the average of the highest

element (or the best guess) pQðx28Þ must tend to Q3; or

E{pQðx28 ¼ single-state guessÞ} ¼ Q3 ð13Þ

It is easy to understand that the expected success of the

prediction for each residue must approach the over-all

accuracy of the algorithm. Thus, one can do two direct

measurements from an application of the algorithm to a

large sample (e.g. a non-redundant data set): first, a simple

average of the confidence of each prediction, and second,

the tally of prediction success to arrive at Q3: One can

imagine that many distributions can satisfy this condition

without bearing any relation to the true underlying

distribution. However, those that do not satisfy it are

inappropriate as coefficients in the hybrid distribution

(Eq. (6)).

4. Summary and concluding remarks

4.1. Building optimal probability distributions in the ðf;cÞ

space for each amino acid given a 28 prediction of a known

accuracy.

One can build propensities in backbone structure which

incorporates the extent of belief for a particular prediction.

The method we introduce in this work takes account of the

following factors:

(a) the amino acid identity of the residue of interest;

(b) the global prediction accuracy Q3;

(c) proportion of bad predictions (H $ E) fbad;

and any of the following output types:

(d) the 28 state predicted for a residue;

(e) the accuracy index at every prediction instance, q3; or

(f) the 3-state probability output.

Propensities generated by the methods suggested here

reflect states of knowledge – no biophysical relationships

are implied. For instance, when the prediction scheme is

highly confident in a particular prediction, the optimal

propensity distribution resembles the ðf;cÞ distribution of

backbones known to be in the predicted three-state 28 state.

However, at low confidence levels, the optimal distribution

is buffered by boosting probabilities outside the canonical

regions of the predicted state’s phi–psi space, to account for

Table 6

Residual entropy from three-state probability outputs with perturbation from underlying probabilities

Global prediction conditionsa Residual entropyb, (nats)

Hðxðf;cÞ208 lx28P3;YaaÞ;

Perturbationc d Residual entropyd, (nats)

Hðxðf;cÞ208 lx28P3;YaaÞ;

Q3 fbad PQðx28Þ ¼ Ptrueðx28Þ PQðx28Þ ¼ Ptrueðx28Þ^ d

0.65 0.05 3.49 20.20 3.55

20.10 3.51

20.05 3.49

þ0.05 3.49

þ0.10 3.50

þ0.20 3.51

0.70 0.04 3.44 20.20 3.51

20.10 3.46

20.05 3.45

þ0.05 3.44

þ0.10 3.44

þ0.20 3.45

0.75 0.04 3.39 20.05 3.39

þ0.05 3.39

0.80 0.04 3.33 20.05 3.34

þ0.05 3.34

0.85 0.03 3.28 20.05 3.29

þ0.05 3.28

a Q3; three-state accuracy; fbad; fraction of bad predictions (H $ E).
b Residual entropy from three-state probability schemes which have as outputs the true underlying probabilities.
c Perturbation made to the highest of the three probability values comprising PQðx28Þ; when possible (i.e. perturbed values must fall between 0 and 1).
d Residual entropy from three-state probability schemes which have as outputs slightly perturbed values from the true underlying probabilities.
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the increased possibility that the prediction may be wrong.

The proper balance between the two extremes is determined

by an optimization scheme.

In this work, we introduced a procedure to generate the

most informative phi–psi structural distribution given a

single-state prediction, through a straightforward optimiz-

ation of the hybrid coefficient g: There is some improvement

in information extraction when using algorithms which

output a confidence index for every prediction, brought

about by tailoring the structural distribution to each residue

at its particular level of 28 prediction confidence. Finally,

when given a three-state probability output, one must first

ascertain its probabilistic nature before proceeding further.

Because one does not have to carry out an optimization

procedure, it is convenient to use the three-state probabil-

ities to generate hybrid structural distributions. Specifically,

one simply takes the state probabilities as coefficients in a

weighted linear combination of the canonical distributions

for H, E, and C. However, the threat of significant

degradation of information if the state probabilitiies do

not correspond with the underlying true prediction prob-

abilities requires caution.

4.2. Information content of secondary structure predictions

of limited accuracy.

We summarize our results relating to the information

content of predicted secondary structures and to their

potential use in the effort to build tertiary structural models.

a. If the prediction accuracy is below 50%, virtually no

advantage is gained from using the 28 prediction to build

backbone structural propensities. The high rate of mis-

predictions cancels any benefit from the correct assign-

ments. The fraction of structural information from

secondary structure retained, uret; given prediction accuracy

Q3 and fraction of bad predictions fbad is shown in Fig. 9.

The amount of information loss at Q3 ¼ 60% is at least

90%, a sizeable casualty of the still substantial rate of

mispredictions. Even at high levels of Q3; the level of

information loss remains high: for instance, at Q3 ¼ 95%;

fbad ¼ 0:03; the amount of information retained is only 70%.

b. Even at perfect prediction accuracy ðQ3 ¼ 100%Þ; the

task of specifying the actual backbone structure given its 28

state remains difficult. The amount of information gained by

knowing the secondary structure fully, Igðx28; YaaÞ (Eq. (8)),

is 0.504 nats, which is only 13.9% of the initial backbone

structure uncertainty Hðxðf;cÞ208 lYaaÞ ¼ 3:622 nats. The

remainder (3.118 nats) is a formidable amount of residual

entropy facing any tertiary structure prediction strategy,

even after the secondary structure state of every residue in

the chain is known.

c. Small improvements in prediction accuracy have a

significant effect on the amount of information extracted by

the backbone propensity distributions. Fig. 10(A) plots the

increase in the fraction of information salvaged by a single

point increase in Q3 vs. the particular Q3 level. At levels

around Q3 ¼ 75%; the average increase in the fraction of

information returned by improving Q3 by 1% to 76% is

around 1.5%. The increase in information increases at

higher levels of Q3; as shown by the positive slope (0.047)

of the linear regression line. At Q3 levels around 80%, the

increase in information by a single point improvement in Q3

is close to 1.8%. Minute increases in Q3 give a non-trivial

improvement in information extraction.

d. Decreasing the fraction of bad predictions causes a

corresponding increase in the fraction of information

returned by the backbone propensity distributions.

Fig. 10(B) plots the increase in the fraction of information

salvaged by a single point decrease in fbad vs. the particular

fbad level. The increase in information is around 1% when

the fraction fbad is decreased by 1% at around fbad ¼ 0:04

level. The improvement in information extraction by

improving prediction quality, as gauged by fbad; is not as

large as the effect of increasing Q3: Nonetheless, limiting

the number of bad predictions generates more informative

structural distributions.

e. Secondary structure prediction schemes which provide

an index to quantify prediction confidence at each predic-

tion site yield a better ensemble of structural distributions.

Predictions with high confidence index values will have

propensity distributions that resemble canonical distri-

butions of H, E, or C (whichever the predicted state is);

on the other hand, low confidence index values will have

broader distributions, to reflect the uncertainty associated

with the particular prediction. A modest increase in the

information gain can be expected in tailoring the structural

distribution to reflect prediction confidence.

f. We reiterate the importance of the choice of structural

partition in maximizing the information gain. Given a

limited database, an optimum level of resolution exists for

Fig. 9. Contour map showing the fraction of structural information from

secondary structure retained, uret; given prediction accuracy Q3 and fraction

of bad predictions fbad: The contour lines represent the level of uret at

different values of Q3 and fbad:
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every purpose. Our procedure incorporates a search for this

optimum by direct measurement of the information gain as a

function of structure discretization. Table 2 shows a typical

set of results generated by varying the level of structural

detail.

g. More sophisticated algorithms which output three-

state probabilities instead of a single-state best guess have

the potential to simplify the generation of structural

distributions (by a simple linear combination of the

canonical distributions of H, E, and C, weighted by the

three-state probability output) and marginally increase

information gain. However, to reap these benefits, the

relation PQðx28Þ < Ptrueðx28Þ must be assured. Any latent

information a prediction may have can be erased by

unprobabilistic outputs which mislead the search for the

native backbone conformation.
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Fig. 10. Increase in information measured upon small changes in accuracy

Q3 and fraction of bad predictions fbad: (A) The fraction of information

salvaged ðdÞ by a single point increase in Q3 (i.e. 1% increase) vs. the

particular Q3 level. (B) The fraction of information salvaged ðdÞ by a single

point decrease in fbad (i.e. 0.01 decrease) vs. the particular fbad level.
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